

Missing Y-rays from kpc-scale AGN Jets

A Test of the IC/CMB Model

Eileen Meyer Space Telescope Science Institute

5th International Fermi Symposium Nagoya, Japan 22 October 2014

Collaborators.

Markos Georganopoulos (UMBC), Eric Perlman (FIT), Bill Sparks (STScI), John Biretta (STScI), Marco Chiaberge (STScI), Aneta Siemiginowska (CfA), Leith Godfrey (ASTRON)

July 1999: The Chandra X-ray Observatory is Launched

August 1999: Chandra discovers the extended kpc-scale jet of PKS 0637-752 during orbital activation and checkout phase

The Quasar Surprise!

Low-power, FR I type jets:

Single radio-optical-Xray spectrum

Wilson & Yang 2002

Knot F

Knot F

8 10 12 14 16 18

v [Hz]

Powerful, "Quasar" Jets like PKS 0637-752:

Anomalously High X-rays

Godfrey+ 2012

Why is this problem important? (Spoiler Slide!)

- Because we don't know the speed, particle makeup, energy, and momentum of these jets
- ➤ This ignorance is partly why "AGN heating" in galaxy evolution is very ad-hoc and poorly understood we cannot quantify it without knowing some of the above

To explain the X-rays in Quasar Jets, we come down to two models:

MODEL 1 – Requires **very powerful jets** (near or super-Eddington) which are narrow "pencil beams", **highly relativistic on the kpc scale**. Total (4π) integrated) emission on the kpc scale is much lower than what you get from the core

MODEL 2 – Suggests **low-power jets** that nonetheless are **highly efficient multi-TeV particle accelerators**. Jets are slow on kpc scales, and kpc-scale radiative output may rival or exceed the core emission, with implications for blazar heating.

Anomalously Bright Quasar Jets: One of Chandra's major discoveries, and an ongoing mystery.

Dozens of quasar jets with high kpc-scale X-ray emission The Active Galaxy 4C+29.30 Credit: X-ray: NASA/CXC/SAO/A.Siemiginowska et al. Optical: NASA/STScI; Radio: NSF/NRAO/VLA

Relative R.A. (drasec)

Dan Harris, Aneta Siemiginowska, Herman Marshall & Others

What is the Origin of the X-rays...

... and what can it tell us about Jet Physics?

Synchrotron Radiation

- Leptonic: second electron energy distribution

[Jester+ 2006; Uchiyama+ 2006; Hardcastle 2006]

- Hadronic Models [Aharonian+ 2002]

Inverse Compton Upscattering

- Synchrotron Self-Compton
- "External" Compton with the CMB photon field (aka "IC/CMB")

BOTH possible IC models were ruled out in the original case of PKS 0637

Chartas+ 2000

Quasar Jets are frequently observed to be highly relativistic on sub-parsec scales probed by VLBI with $\Gamma = 10-50$

But Radio surveys have long suggested that on kiloparsec scales the jet is only mildly relativistic with $\Gamma = 1.2-1.5$

[e.g., Arshakian & Longair 2004]

However, if you assume that powerful quasar jets remain highly relativistic on kpc scales, then IC/CMB works.

[Celotti+ 2001, Tavecchio+2000]

PKS 0723+679

Working IC/CMB model assuming fast jet

The Essential Problem.

IC/CMB requires near or super-Eddington jets in some cases, and small beaming angle implies longer jets than observed.

In many cases the IC/CMB fit is an "uncomfortable" one

We cannot definitively show that IC/CMB or synchrotron is a better mechanism based on SED fits.

PKS 1136-135, IC/CMB Model

PKS 1136-135, synchrotron Model

[Cara+ 2013 – Showing that X-rays of PKS 1136-135 are synchrotron due to high UV polarization]

The Test: How to Rule out IC/CMB

[Georganopoulos+ 2006]

The IC Component is a copy of the synchrotron, shifted in frequency and luminosity.

That shift is parameterized ONLY by B/ δ , no other free parameters.

The Test: How to Rule out IC/CMB

[Georganopoulos+ 2006]

The IC Component is a copy of the synchrotron, shifted in frequency and luminosity.

That shift is parameterized ONLY by B/ δ , no other free parameters.

The Test: How to Rule out IC/CMB

[Georganopoulos+ 2006]

The IC Component is a copy of the synchrotron, shifted in frequency and luminosity.

That shift is parameterized ONLY by B/δ , no other free parameters.

Getting the X-rays just right means fixing B/ & and consequently implies a high level of gamma-ray emission which should be detectable with Fermi

Case 1: 3C 273

Resolution Issue: From core to end of the jet is ~ 24" - even the 68% PSF at 3 GeV is >10x this scale (few tenths of a degree)

However:

- ➤ IC/CMB emission of the 3C273 should be quite hard and completely non-variable.
- \triangleright The core is known to be soft ($\Gamma \sim 2.7$), and variable.

We can thus stack the parts of the 3C 273 lightcurve when the blazar is low to get the lowest upper limit, which applies to both the core + the jet.

Case 1: 3C 273 IC/CMB is ruled out as the source of the X-rays.

Case 2: PKS 0637-752

Understanding Jet Physics on Large Scales

> What are the speeds of jets on the kpc scale?

- Proper Motions with VLA, HST can only probe jets within ~500 Mpc, but do give upper limits on δ
 (e.g., M87, 3C 273, 3C 264, 3C 346 as part of HST program)
- However, detection of IC/CMB with Fermi is possible for a number of jets in the next 5-10 years (3C 273 is #1 target) \rightarrow fix B/ δ
- Can start to put tight constraints on B, equipartition

> A new Requirement of Jet Models

- What mechanism can produce extremely efficient, multi-TeV particle acceleration to produce the second component?
- Jets must be "slow" on kpc scales

Ongoing work

- Fermi has a lot to contribute: high-E limits go down as 1/time
- We can continue to rule out IC/CMB X-rays in more and different jets, but also possibly detect the IC/CMB emission that must be there at some level.

Large-scale jet may dominate blazar in total output at TeV energies For 3C 273, δ =2-5 implies IC/CMB from the X-ray synchrotron spectrum well above the integrated TeV luminosity from BL Lacs (~ 10⁴¹ erg/s)

Conclusions

The IC/CMB model has been **ruled out in 3 cases** as the mechanism for the high X-ray fluxes of some quasar jets.

We instead favor synchrotron models, but the origin is unknown (and hadronic models are not ruled out) – this suggests less powerful jets, but also a **far greater radiative output on kpc scales**, including dominant TeV emission. This may have far-reaching impact from reionization to heating in galaxy evolution.

An extremely important contribution of Fermi all-sky monitoring will be to continue the search for the IC/CMB emission from powerful quasars, as IC/CMB detection enables direct measurement of B/ δ .

When combined with proper-motion studies we can "solve" the system, unambiguously determining important physical parameters (angle, Lorentz factors, Doppler factor, Magnetic Field) – look for proper motion results on 3C 273 in 2015 (HST observations in cycle 21)